Feature Extraction for Claim Check-Worthiness Prediction Tasks Using LLM

Yuka Teramoto Takahiro Komamizu Mitsunori Matsushita Kenji Hatano
雑誌・プロシーディングス名: Information Integration and Web Intelligence
開催地(都道府県): Bratislava
国名(英語): Slovakia
言語: English
出版社: Springer Nature Switzerland
ページ: 53--58
出版年: 2024
出版月: 12
出版日: 2024-12-02
DOI: 10.1007/978-3-031-78090-5_5
🌐 詳細ページへ
       

概要

This study explores the use of Large Language Models (LLMs) for Claim Check-Worthiness Prediction (CCWP), a crucial pre-screening task in fact-checking. We predict the time between a claim’s occurrence and verification by analyzing data from fact-checking organizations. The results show that validation time is the same between the top 25% and bottom 75% of total checklist condition fulfillment claims. That is, further optimization is needed for LLMs to perform effective CCWPs.

引用情報

Yuka Teramoto, Takahiro Komamizu, Mitsunori Matsushita, , Kenji Hatano, Feature Extraction for Claim Check-Worthiness Prediction Tasks Using LLM, Information Integration and Web Intelligence, pp.53--58, 2024-12-02, DOI: 10.1007/978-3-031-78090-5_5.

Iconic One Theme | Powered by Wordpress